Human population density, and therefore urbanization, is predicted to increase rapidly along South Carolina’s (SC) coast over upcoming decades, which will undoubtedly affect estuarine nutrient (N) and phosphorus (P) levels. This project examines how inorganic and organic forms of N, with or without P, influence phytoplankton biomass and community composition among four coastal SC habitats: a forested tidal creek, an urbanized tributary, a salt marsh, and a stormwater detention pond. Phytoplankton biomass and community composition responses will be assessed via seasonal field sampling and nutrient addition bioassays over two years (2011-2013). Fluorometric analyses of chlorophyll a will be used to calculate phytoplankton biomass. High performance liquid chromatography (HPLC) pigments will be analyzed using CHEMTAX to determine relative abundances of algal taxa. Dissolved organic carbon (DOC) and heterotrophic bacterial abundances will also be assessed.

Introduction

Land Cover

Diversity of land cover along the SC coast
- Urban, industrial, residential, relatively untouched forested wetlands
- Land cover likely influences nutrient condition
Urbanization expected to increase along coastal habitats, which may alter N and P levels into coastal habitats

Phytoplankton Response to Macronutrients

Phytoplankton biomass is strongly influenced by dissolved inorganic nitrogen in Pamlico Sound, NC⁴ and Neuse River Estuary, NC⁵

Dissolved Organic Carbon (DOC)

Coastal SC is rich in DOC; most is terrigenous DOC fuels microbial respiration and can contribute to hypoxia

Objective 1: Determine whether seasonal phytoplankton biomass (chlorophyll a) responds to macronutrient (N and P) form across sites.

Objective 2: Determine whether seasonal phytoplankton community composition responds to macronutrient form across sites.

Objective 3: Assess whether heterotrophic microbial levels mimic patterns of DOC and phytoplankton biomass between sites.

Methodology

Nutrient Additions (in triplicate)

<table>
<thead>
<tr>
<th>Nutrient</th>
<th>Control</th>
<th>NH₄⁺</th>
<th>NO₂⁻</th>
<th>NO₃⁻</th>
<th>Urea</th>
<th>PO₄³⁻</th>
</tr>
</thead>
<tbody>
<tr>
<td>Whole Water</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Bioassay Deployment

Incubation Water (t=0 and post-bioassay)

- Water quality
 - total N and P
 - dissolved nutrients
 - DOC
 - T, S, DO, pH
 - verify HPLC
 - Lugol's preservation for phytoplankton abundance
- Microscopy
- HPLC Analysis
- Chlorophyll a measurements
- phytoplankton biomass

Flow cytometry

Acknowledgments

I would like to thank SCDNR and Hollings Marine Laboratory for providing lab space. Thank you to my committee members: Dianne Greenfield, Jack DiTullio, Jay Pinckney, and Sanger for their intellect and guidance. Thank you to members of SCAEL for their support and assistance. This project is funded by EPA award # CD-9547331-0.

References