INFLUENCE OF COBALAMIN (VITAMIN B\textsubscript{12}) ON THE MICROBIAL DEGRADATION OF DIMETHYLSULFONIOPROPIONATE AND RELATED COMPOUNDS

Aaron Burnham1; Peter Lee, PhD2

1[GPMB, The Graduate School at the University of Charleston, S.C.], 2[CofC].

Background

- Autotrophic DMSP production and subsequent microbial degradation play an important role in global sulfur cycle
- Sulfur Requirements of marine microbes
- Global climate Processes
 - Demethylation/demethiolation
 - Methionine Synthesis
- Cleavage into DMS
 - Source for cloud condensing nuclei (CCN)
- Vitamin B\textsubscript{12}
 - All eukaryotes auxotrophic
 - Known cofactor for MetH
- Potential limiting factor in Met production

Objective and Hypotheses

O: Determine the effect of Vitamin B\textsubscript{12} on the microbial switch and relative use of each DMSP degradation pathway

- \textsubscript{H\textsubscript{1}}: B\textsubscript{12}-spiked treatments will produce a larger fraction of demethylation products
- \textsubscript{H\textsubscript{2}}: Chloroform-spiked treatments will produce a larger fraction of cleavage products

Expected Stable Isotope Products of Degradation Pathways

- \textsubscript{H\textsubscript{2}}C – S – CH\textsubscript{3}
- \textsubscript{D\textsubscript{2}}C – S – CD\textsubscript{3}
- biogenic DMSP: m/z 63
- D6-DMSP: m/z 69

- \textsubscript{H\textsubscript{2}}C – S – H
- \textsubscript{D\textsubscript{2}}C – S – H
- biogenic MeSH: m/z 49
- D3-MeSH: m/z 52

- \textsubscript{H\textsubscript{2}}C – H
- \textsubscript{D\textsubscript{2}}C – H
- biogenic methane: m/z 16
- D3-methane: m/z 19

Methods

- Conduct 6x Vitamin B\textsubscript{12} addition experiments using natural SC bacterioplankton assemblages
- Pump (and pre-screen using 5 µm filter) ~50 L water from ~5m depth.
- Utilize a Latin Square Experimental Design to compare four treatment types
- Each treatment will be spiked with the stable isotope deuterium labeled D6 DMSP
- Use Proton Transfer Reaction 1000 Time of Flight (PTR-TOF) mass spectrophotometer to measure the D6 DMSP degradation products over the course of 48 hours

Additional Research Goals

- Determine effect of Vitamin B\textsubscript{12} on the relative preference of DMSO degradation pathways
- Identify enzymes associated with the DMSP/DMSO degradation pathways in natural microbial assemblages
- Methyl Transferase
- DMSP Lyases
- DMSO Reductases
- DMSO Monoxygenases

References

Broader Impacts

- Climatic Implications
 - CLAW: Negative feedback loop
 - Anti-CLAW: Positive feedback loop
- Potential increase in CH\textsubscript{4} production (greenhouse effect)
- Ecological Implications
 - Sulfur Requirements of Marine Microbes
 - DMS as a feeding cue
 - Reef fish
 - Marine birds
- Autotrophic DMSP production and subsequent microbial degradation play an important role in global sulfur cycle
- Sulfur Requirements of marine microbes
- Global climate Processes
 - Demethylation/demethiolation
 - Methionine Synthesis
 - Cleavage into DMS
 - Source for cloud condensing nuclei (CCN)
 - Vitamin B\textsubscript{12}
 - All eukaryotes auxotrophic
 - Known cofactor for MetH
 - Potential limiting factor in Met production

References